

DATABASE MANAGEMENT SYSTEMS

(R22A0584)
LABORATORY MANUAL

B.TECH

(IIIYEAR–I

SEM)

(2025-26)

 PREPARED BY

Mr.I.UMA
MAHESWARA RAO

DEPARTMENT OF COMPUTER SCIENCE AND

INFORMATION TECHNOLOGY

MALLAREDDY COLLEGE OF ENGINEERING &TECHNOLOGY

(Autonomous Institution–UGC, Govt.ofIndia)
Recognizedunder2(f)and12(B) of UGCACT1956

(AffiliatedtoJNTUH,Hyderabad,ApprovedbyAICTE-AccreditedbyNBA&NAAC–‘A’Grade-ISO9001:2015Certified)

Maisammaguda,Dhulapally(PostVia.Hakimpet),Secunderabad–500100,TelanganaState,India

DEPARTMENT OF COMPUTER SCIENCE AND

INFORMATION TECHNOLOGY

VISION

 To achieve high quality in technical education that provides the skills and attitude to

adapt to the global needs of the Information Technology sector, through academic

and research excellence.

MISSION

 To equip the students with the cognizance for problem solving and to improve the

teaching learning pedagogy by using innovative techniques.

 To strengthen the knowledge base of the faculty and students with motivation

towards possession of effective academic skills and relevant research experience.

 To promote the necessary moral and ethical values among the engineers, for the

betterment of the society.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEO1 – ANALYTICAL SKILLS

 To facilitate the graduates with the ability to visualize, gather

information, articulate, analyze, solve complex problems, and

make decisions. These are essential to address the challenges of

complex and computation intensive problems increasing their

productivity.

PEO2 – TECHNICAL SKILLS

 To facilitate the graduates with the technical skills that prepare

them for immediate employment and pursue certification

providing a deeper understanding of the technology in advanced

areas of computer science and related fields, thus encouraging to

pursue higher education and research based on their interest.

PEO3 – SOFT SKILLS

 To facilitate the graduates with the soft skills that include

fulfilling the mission, setting goals, showing self-confidence by

communicating effectively, having a positive attitude, get

involved in team-work, being a leader, managing their career

and their life.

PEO4 – PROFESSIONAL ETHICS

 To facilitate the graduates with the knowledge of professional

 and ethical responsibilities by paying attention to grooming, being conservative

 with style, following dress codes, safety codes, and adapting themselves

 to technological advancements.

PROGRAM SPECIFIC OUTCOMES (PSOs)

After the completion of the course, B. Tech Information Technology, the graduates will have the

following Program Specific Outcomes:

1. Fundamentals and critical knowledge of the Computer System: Able to understand the

working principles of the computer System and its components, Apply the knowledge to

build, asses, and analyze the software and hardware aspects of it.

2. The comprehensive and applicative knowledge of Software Development:

Comprehensive skills of Programming Languages, Software process models,

methodologies, and able to plan, develop, test, analyze, and manage the software and

hardware intensive systems in heterogeneous platforms individually or working in teams.

3. Applications of Computing Domain & Research: Able to use the professional,

managerial, interdisciplinary skill set, and domain specific tools in development processes,

identify the research gaps, and provide innovative solutions to them.

PROGRAM OUTCOMES (POs)

Engineering Graduates should possess the following:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering

problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of

mathematics, natural sciences, and engineering sciences.

3. Design / development of solutions: Design solutions for complex engineering problems

and design system components or processes that meet the specified needs with

appropriate consideration for the public health and safety, and the cultural, societal, and

environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and

research methods including design of experiments, analysis and interpretation of data,
and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and

modern engineering and IT tools including prediction and modeling to complex
engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to

assess societal, health, safety, legal and cultural issues and the consequent

responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional

engineering solutions in societal and environmental contexts, and demonstrate the

knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities

and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or

leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and

write effective reports and design documentation, make effective presentations, and give

and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a member

and leader in a team, to manage projects and in multi-disciplinary environments.

12. Life- long learning: Recognize the need for, and have the preparation and ability to

engage in independent and life-long learning in the broadest context of technological

change.

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY
Maisammaguda, Dhulapally Post, Via Hakimpet, Secunderabad – 500100

DEPARTMENT OF COMPUTER SCIENCE & INFORMATION
TECHNOLOGY

GENERAL LABORATORY INSTRUCTIONS

1) Students are advised to come to the laboratory at least 5 minutes before (to the starting

time), those who come after 5 minutes will not be allowed into the lab.

2) Plan your task properly much before to the commencement, come prepared to the lab

with the synopsis / program / experiment details.

3) Student should enter into the laboratory with:

a) Laboratory observation notes with all the details (Problem statement, Aim,

Algorithm, Procedure, Program, Expected Output, etc.,) filled in for the lab

session.

b) Laboratory Record updated up to the last session experiments and other utensils (if any)

needed in the lab.

c) Proper Dress code and Identity card.

4) Sign in the laboratory login register, write the TIME-IN, and occupy the computer system

allotted to you by the faculty.

5) Execute your task in the laboratory, and record the results / output in the lab

observation note book, and get certified by the concerned faculty.

6) All the students should be polite and cooperative with the laboratory staff, must

maintain the discipline and decency in the laboratory.

7) Computer labs are established with sophisticated and high end branded systems, which

should be utilized properly.

8) Students / Faculty must keep their mobile phones in SWITCHED OFF mode during the lab

sessions. Misuse of the equipment, misbehaviors with the staff and systems etc., will attract

severe punishment.

9) Students must take the permission of the faculty in case of any urgency to go out; if

anybody found loitering outside the lab / class without permission during working hours

will be treated seriously and punished appropriately.

10) Students should LOG OFF/ SHUT DOWN the computer system before he/she leaves the lab

after completing the task (experiment) in all aspects. He/she must ensure the system /seat is

kept properly.

Head of the Department Principal

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY

III Year B.Tech.CSIT- I Sem L/T/P/C
 -/0/2/1

(R22A0584) DATABASE MANAGEMENT SYSTEMS LAB

COURSE OBJECTIVES:

1. Introduce ER data model, database design and normalization

2. Learn SQL basics for data definition and data manipulation

3. To enable students to use Non-Relational DBMS and understand the usage of

document oriented and distributed databases.

4. To enable the students to use TCL and DCL Commands and perform all states of

Transaction operations.

5. To familiarize issues of concurrency control and transaction management

List of Experiments:

1. Concept design with E-R Model

2. Relational Model

3. Normalization

4. Installation of MySQL / MongoDB and practicing DDL commands

5. Practicing DML commands

6. A. Querying (using ANY, ALL, UNION, INTERSECT, JOIN, Constraints etc.)

B. Nested, Correlated subqueries

7. Queries using Aggregate functions, GROUP BY, HAVING and Creation and dropping of Views.

8. Triggers (Creation of insert trigger, delete trigger, update trigger)

9. Procedures

10. Usage of Cursors

11. CASE STUDY: University Database System

TEXT BOOKS:

1. Database Management Systems, Raghurama Krishnan, Johannes

Gehrke, Tata Mc Graw Hill, 3 rd Edition

2. Database System Concepts, Silberschatz, Korth, McGraw Hill, V edition.

REFERENCE BOOKS:

1. Database Systems design, Implementation, and Management, Peter Rob & Carlos

Coronel 7th Edition.

2. Fundamentals of Database Systems, Elmasri Navrate, Pearson Education

3. Introduction to Database Systems, C.J. Date, Pearson Education

4. Oracle for Professionals, The X Team, S. Shah and V. Shah, SPD.

5. Database Systems Using Oracle: A Simplified guide to SQL and PL/SQL, Shah, PHI.

6. Fundamentals of Database Management Systems, M. L. Gillenson, Wiley Student

Edition.

COURSE OUTCOMES:

1. Design database schema for a given application and apply normalization

2. Acquire skills in using SQL commands for data definition and data manipulation.

3. Develop solutions for database applications using procedures.

4. Develop solutions for database applications using cursors .

5. Develop solutions for database applications using triggers.

INDEX

S.No

Week.No List of Experiments

Page

No

1

WEEK-1

Concept design with E-R Model: Apply cardinalities

for each relationship, identify strong entities and weak

entities for relationships

like generalization, aggregation, specialization

11

2

WEEK-2

Relation Model: Represent attributes as columns in tables
and different types of attributes.

23

3

WEEK-3

Normalization-Types of Normal Forms 31

4

WEEK-4 Installation of MySQL/MongoDB and Practicing DDL

commands(Create, Alter, Drop)

36

5

WEEK-5
Practicing DML Commands(Select, Insert, Update,
delete) 52

6

WEEK-6

A) Querying(Using Any, All, Union, Intersect, Join,

Constraints etc)

B) Nested, Correlated Subqueries

56

7

WEEK-7
Queries Using Aggregate Functions, Group By and Having

Clause, Creation and Dropping of Views

66

8

WEEK-8

Triggers(Creation of Insert Trigger, Delete Trigger

and Update Trigger)

72

9

WEEK-9

Procedures(Using IN, OUT and INOUT Parameters) 80

10

WEEK-10

Usage of Cursors
86

11

WEEK-11

 Case Study: University Database System

90

1

INTRODUCTION

Types of database models:

Hierarchical Model

This model is like a hierarchical tree structure, used to construct a hierarchy of

records in the form of nodes and branches. The data elements present in the structure have

Parent-Child relationship. Closely related information in the parent-child structure is stored

together as a logical unit. A parent unit may have many child units, but a child is restricted

to have only one parent.

The drawbacks of this model are:

 The hierarchical structure is not flexible to represent all

the relationship proportions, which occur in the real

world.

 It cannot demonstrate the overall data model for the enterprise because of the

non-availability of actual data at the time of designing the data model.

 It cannot represent the Many-to-Many relationship.

Network Model

 It supports the One-To-One and One-To-Many types only. The basic objects in

this model are Data Items, Data Aggregates, Records and Sets.

 It is an improvement on the Hierarchical Model. Here multiple parent-child

relationships are used. Rapid and easy access to data is possible in this model

due to multiple access paths to the data elements.

Relational Model

 Does not maintain physical connection between relations Data is organized in

terms of rows and columns in a table

 The position of a row and/or column in a table is of no importance The inter

section of a row and column must give a single value

2

Features of an RDBMS

 The ability to create multiple relations and enter data into them

An attractivequery language

 Retrieval of information stored in more than one table

 An RDBMS product has to satisfy at least Seven of the 12 rules

of E.F Codd to be accepted as a full- fledged RDBMS.

Relational Database Management System

RDBMS is acronym for Relation Database Management System. Dr. E. F. Codd first

introduced the Relational Database Model in 1970. The Relational model allows data to be

represented in a simple row- column. Each data field is considered as a column and each record

is considered as a row. Relational Database is more or less similar to Database Management

System. In relational model there is relation between their data elements. Data is stored in tables.

Tables have columns, rows and names. Tables can be related to each other if each has a column

with a common type of information. The most famous RDBMS packages are Oracle, Sybase and

Informix.

Simple example of Relational model is as follows:

Importance of Relational Model?

The relational model for database management is an approach to logically represent and manage

the data stored in a database. In this model, the data is organized into a collection of two-

dimensional inter-related tables, also known as relations. Each relation is a collection of columns

and rows, where the column represents the attributes of an entity and the rows (or tuples)

represents the records.

3

 The columns of the table indicate the attributes related to the entity. In this case,

the roll number, CGPA, and the name of the student

As we can notice from the above relation:

 Any given row of the relation indicates a student i.e., the row of the table

describes a real-world entity.

4

 Here, both tables are based on student’s details. Common field in both tables is ID.So we can say both

tables are related with each other through Student ID column.

The Degree of Relationship indicates the link between two entities for a specified occurrence of

each.One to One Relationship: (1:1)Student Has Roll No.

One student has only one Rollno. For one occurrence of the first entity, there can be, at themost one

related occurrence of the second entity, and vice-versa.

One to Many or Many to One Relationship: (1:M/M: 1)

1 :M

Course Contains Students

As per the Institutions Norm, One student can enroll in one course at a time however, in one course,

there can be more than one student.

For one occurrence of the first entity there can exist many related occurrences of the second entity

and for every occurrence of the second entity there exists only one associated occurrence of the

first.

Many to Many Relationship: (M:M)M :M

Students Appears Tests

The major disadvantage of the relational model is that a clear-cut interface cannot be determined.

Reusability of a structure is not possible. The Relational Database now accepted model on which

major database system are built.

Oracle has introduced added functionality to this by incorporated object-oriented capabilities. Now

it is known is as Object Relational Database Management System (ORDBMS). Object- oriented

concept is added in Oracle8.

Some basic rules have to be followed for a DBMS to be relational. They are known as Codd’s rules,

designed in such a way that when the database is ready for use it encapsulates the relational theory

to its full potential. These twelve rules are as follows.

E. F. Codd Rules

1. The Information Rule

All information must be store in table as data values.

5

2. The Rule of Guaranteed Access

Every item in a table must be logically addressable with the help of a table name.

3. The View Updating Rule

All views that are theoretically updatable are also updatable by the system.

4. The Insert and Update Rule

This rule indicates that all the data manipulation commands must be operational on sets of rows

having a relation rather than on a single row.

5. The Physical Independence Rule

Application programs must remain unimpaired when any changes are made in storage

representationor access methods.

6. The Logical Data Independence Rule

The changes that are made should not affect the user’s ability to work with the data. The change can

be splitting table into many more tables.

7. The Integrity Independence Rule

The integrity constraints should store in the system catalog or in the database.

8. The Distribution Rule

The system must be access or manipulate the data that is distributed in other systems.

9. The Non-subversion Rule

If a RDBMS supports a lower level language then it should not bypass any integrity constraints

defined in the higher level.

6

What is MYSQL

MySQL is a relational database management system based on the Structured Query Language, which is

the popular language for accessing and managing the records in the database. MySQL is open-source and

free software under the GNU license. It is supported by Oracle Company.

MySQL is a Relational Database Management System (RDBMS) software that provides many things,

which are as follows:

It allows us to implement database operations on tables, rows, columns, and indexes.

It defines the database relationship in the form of tables (collection of rows and columns), also known as

relations.

It provides the Referential Integrity between rows or columns of various tables.

It allows us to updates the table indexes automatically.

It uses many SQL queries and combines useful information from multiple tables for the end-users

MySQL is named after the daughter of co-founder Michael Widenius whose name is "My".

To communicate with Oracle, mysql supports the following categories of commands:

1. Data Definition Language

Create, Alter, Drop and Truncate

2. Data Manipulation Language

Insert, Update, Delete and Select

3. Transaction Control Language

Commit, Rollback and Save point

4. Data Control Language

Grant and Revoke

MySQL uses many different data types broken into three categories −

 Numeric

 Date and Time

 String Types.

7

Numeric Data Types

MySQL uses all the standard ANSI SQL numeric data types, so if you're coming to MySQL from a

different database system, these definitions will look familiar to you.

The following list shows the common numeric data types and their descriptions −

INT − A normal-sized integer that can be signed or unsigned. If signed, the allowable range is from -

2147483648 to 2147483647. If unsigned, the allowable range is from 0 to 4294967295. You can

specify a width of up to 11 digits.

TINYINT − A very small integer that can be signed or unsigned. If signed, the allowable range is

from -128 to 127. If unsigned, the allowable range is from 0 to 255. You can specify a width of up to

4 digits.

SMALLINT − A small integer that can be signed or unsigned. If signed, the allowable range is from

-32768 to 32767. If unsigned, the allowable range is from 0 to 65535. You can specify a width of up

to 5 digits.

MEDIUMINT − A medium-sized integer that can be signed or unsigned. If signed, the allowable

range is from -8388608 to 8388607. If unsigned, the allowable range is from 0 to 16777215. You can

specify a width of up to 9 digits.

BIGINT − A large integer that can be signed or unsigned. If signed, the allowable range is from -

9223372036854775808 to9223372036854775807. If unsigned, the allowable range is from 0 to

18446744073709551615. You can specify a width of up to 20 digits.

8

 FLOAT(M,D) − A floating-point number that cannot be unsigned. You can define the display length

(M) and the number of decimals (D). This is not required and will default to 10,2, where 2 is the

number of decimals and 10 is the total number of digits (including decimals). Decimal precision can

go to 24 places for a FLOAT.

 DOUBLE(M,D) − A double precision floating-point number that cannot be unsigned. You can

define the display length (M) and the number of decimals (D). This is not required and will default

to 16,4, where 4 is the number of decimals. Decimal precision can go to 53 places for a DOUBLE.

REAL is a synonym for DOUBLE.

 DECIMAL(M,D) − An unpacked floating-point number that cannot be unsigned. In the unpacked

decimals, each decimal corresponds to one byte. Defining the display length (M) and the number of

decimals (D) is required. NUMERIC is a synonym for DECIMAL.

9

Date and Time Types

The MySQL date and time datatypes are as follows −

 DATE − A date in YYYY-MM-DD format, between 1000-01-01 and 9999-12-31. For example,

December 30th, 1973 would be stored as 1973-12-30.

 DATETIME − A date and time combination in YYYY-MM-DD HH:MM:SS format, between 1000-

01-01 00:00:00 and 9999-12-31 23:59:59. For example, 3:30 in the afternoon on December 30th,

1973 would be stored as 1973-12-30 15:30:00.

 TIMESTAMP − A timestamp between midnight, January 1st, 1970 and sometime in 2037. This looks

like the previous DATETIME format, only without the hyphens between numbers; 3:30 in the

afternoon on December 30th, 1973 would be stored as 19731230153000 (YYYYMMDDHHMMSS).

 TIME − Stores the time in a HH:MM:SS format.

 YEAR(M) − Stores a year in a 2-digit or a 4-digit format. If the length is specified as 2 (for example

YEAR(2)), YEAR can be between 1970 to 2069 (70 to 69). If the length is specified as 4, then

YEAR can be 1901 to 2155. The default length is 4.

String Types

Although the numeric and date types are fun, most data you'll store will be in a string format. This list

describes the common string datatypes in MySQL.

 CHAR(M) − A fixed-length string between 1 and 255 characters in length (for example CHAR(5)),

right-padded with spaces to the specified length when stored. Defining a length is not required, but the

default is 1.

 VARCHAR(M) − A variable-length string between 1 and 255 characters in length. For example,

VARCHAR(25). You must define a length when creating a VARCHAR field.

10

ROADWAY TRAVELS

Roadway Travels: "Roadway Travels" is in business since 1997 with several buses connecting

different places in India. Its main office is located in Hyderabad. The company wants to computerize

its operations in the following areas:

 Reservations and Ticketing

 Cancellations

 Reservations &Cancellation:

Reservations are directly handled by booking office. Reservations can be made 30 days in advance and

tickets issued to passenger. One Passenger/person can book many tickets (to his/her family).

 Cancellations are also directly handed at the booking office.

In the process of computerization of Roadway Travels you have to design and develop a Database

which consists the data of Buses, Passengers, Tickets, and Reservation and cancellation details. You

should also develop query's using SQL to retrieve the data from the database.

11

Bus no

Name

Type

Bus

WEEK-1

AIM: Concept Design with E-R Model

ER-Model:

Relate the entities appropriately. Apply cardinalities for each relationship. Identify strong

entities and weak entities (if any). Indicate the type of relationship (total/partial). Tryto incorporate

generalization, aggregation, specialization etc wherever required.

The Following are the entities:

1. Bus

2. Reservation

3. Ticket

4. Passenger

5. Cancellation

Relationship: - it is defined as an association among two or more entities.

Entity diagram for BUS

12

Entity diagram for Ticket

Entity diagram for Passenger

Entity diagram for Reservation

Tktno
Jour_date

Src

Busno

Dest

Amt
Dept_time

Reach_time

Ticket

Ppno

Age

Gender

Pnrno

Tktno
Name

Passenger

Reservation
Jour_date

Status

Pnrno

contactno

Address

Noofseats

13

Entity diagram for Cancellation

Entity diagram for Branch

The cardinality ratio: - specifies the number of entities to which another entity can beassociated via

a relationship set.

For a binary relationship set R between entity sets A & B, the mapping cardinality must be

one of the following:

1. One-to-One: An entity in A is associated with at most one entity in B and vice versa.

Ex: “Issued to” relation between ticket and passenger entities.

Cancellation
Jour_date

Status

Pnrno

contactno

Address

Noofseats

Location
Name

Branch

Journey

Date

tktno

tktno name

Pnrno

Src age

Issued to
Passenger

Dest 1 1

ppno Gend

Ticket

14

2. One-to-many: An entity in A is associated with any no. of entities in B. An entity in B isat

most associated with at most one entity in A.

Ex: “contains” relation between bus and passenger entities.

Many-to-One: An entity in A is associated with at most one entity in B. However, an entity in B can be

associated with any no. of entities in A.

Ex: “Travels in” relation between passenger and bus entities.

Passenger Bus

tktno

Gender Ppno

Contains
Age

Pnrno

name

Busno

Name

Type

pnrno tktno Busno
name

Name
M 1

Travels in

Age Ppno

Gender
Type

Bus Passenger

15

3. Many-to-many: An entity in A is associated with an no. of entities in B and an entity inB can

be associated with any no. of entities in A.

Types of entities :-

Weak and strong entity: - an entity set may not have sufficient attributes to form a primary key. Such

an entity set is termed a weak entity set. An entity set that has primary key is termed a strong entity

set.

Entity Relationship diagram consisting of Bus, ticket, Passenger and Branch entities:

tktno

tktno

Reach
time

Buys

N M

dtime

J_date

src

Passenger

dest

Tickets

age

ppno

Pnrno name

gender

16

Name
Location

Bus no

Branch
Deals

with Name

Bus

Type

Consists

of

Journey

Date

tktno

name

Pnrno

Src age

Ticket
Issued to

Passenger

Dest
Gend

Reach_time
tktno

ppno

Dept_time

17

1. Generalization: It consists of identifying some common characteristics of a collection of
entity set and creating new entity set that contains entities possessing these common

characteristics.

Ex:

Ex:

It is defined by using ‘ISA’ (Is a) relationship.

2. Aggregation: It allows us to indicate that a relationship set participates in another

relationship set.

18

Ex:

3. Specialization: It is the process of identifying subsets of an entity set (the super set) that
share some distinguishing characteristics. This entity type is called the super class of the

specialization.

19

Concept design with E-R Model:

20

21

22

Viva Questions

1. What is the primary purpose of an ER Diagram?

2. What are the three main components of an ER Diagram?

3. What is an "identifying relationship"? Why is it important for weak entities?

4. What is a multi-valued attribute?

23

WEEK: 2

Relational Model

Represent all entities and all relationships ina tabular fashion

The following are tabular representation of the above entities and relationships
1. BUS:

COLUMNNAME DATATYPE CONSTRAINT

BusNo varchar2(10) PrimaryKey

Source varchar2(20)

Destination varchar2(20)

CoachType varchar2(20)

2. Reservation:

COLUMNNAME DATATYPE CONSTRAINT

PNRNo number(9) PrimaryKey

Journeydate Date

No-of-seats integer(8)

Address varchar2(50)

ContactNo Number(9) Should be equal to 10

Numbers and not allow

Other than numeric

BusNo varchar2(10) Foreign key

Seatno Number

24

3. Ticket:

COLUMNNAME DATATYPE CONSTRAINT

Ticket_No number(9) PrimaryKey

Journeydate Date

Age int(4)

Sex Char(10)

Source varchar2(10)

Destination varchar2(10)

Dep-time varchar2(10)

BusNo Number2(10)

4.Passenger

COLUMNNAME DATATYPE CONSTRAINT

PNRNo Number(9) PrimaryKey

TicketNo Number(9) Foreignkey

Name varchar2(15)

Age integer(4)

Sex char(10) (Male/Female)

Contactno Number(9) Should be equal to 10numbers

And not allow other than

numeric

5.Cancellation:

COLUMNNAME DATATYPE CONSTRAINT

PNRNo Number(9) Foriegn-key

Journey-date Date

Seatno Integer(9)

Contact_No Number(9) Should be equal to 10numbers

And not allow other than

numeric

25

Mysql>create table Bus(BusNo varchar(10),

source varchar(20),Destinationvarchar(20),coachType

varchar(10),primary key(BusNo));

Mysql>desc Bus;

Ticket:

Ticket(TicketNo: string, DOJ: date, Address:string,ContactNo: string, BusNo:String

,SeatNo:Integer,Source: String, Destination: String)

ColumnName Datatype Constraints Type of
Attributes

TicketNo Varchar(20) Primary Key Single-valued

DOJ Date Single-valued

Address Varchar(20) Composite

ContactNo Integer Multi-valued

BusNo Varchar(10) Foreign Key Single-valued

SeatNo Integer Simple

Source Varchar(10) Simple

Destination Varchar(10) Simple

Mysql>create table Ticket(TicketNo varchar(20), DOJ date,

Address varchar(20),ContactNo varchar(15), BusNo varchar(10),

SeatNo int, Source varchar(10),primary key(TicketNo,BusNo),

foreign key(BusNo) references Bus(BusNo));

Mysql>desc Ticket;

26

Passenger:

Passenger(PassportID:String,TicketNo:string,Name:String, ContactNo:string,Age:

integer, Sex: character, Address: String);

ColumnName Datatype Constraints
Type of

Attributes

PassportID Varchar(15) Primary Key Single-valued

TicketNo Varchar(20) Foreign Key Single-valued

Name Varchar(20) Composite

ContactNo Varchar(20) Multi-valued

Age Integer Single-valued

Sex character Simple

Address Varchar(20) Composite

Mysql>Create table passenger(passportID varchar(15) ,

TicketNo varchar(15),Name varchar(15),ContactNo varchar(20),Age integer,

sex char(2),address varchar(20), primary key(passportID,TicketNo),foreign

key(TicketNo) references Ticket(TicketNo));

Mysql> desc passenger;

27

Reservation:

Reservation(PNRNo: String, DOJ: Date, NoofSeats: integer , Address: String

,ContactNo:String, , BusNo: String,SeatNo:Integer)

ColumnName Datatype Constraints Type of Attributes

PNRNo Varchar(20) Primary

Key

Single-valued

DOJ date Single-valued

No_of_Seats Integer Simple

Address Varchar(20) Composite

ContactNo Varchar(10) Multi-valued

BusNo Varchar(10) Foreign
Key

Single-valued

SeatNo Integer Simple

Mysql> Create table Resevation(PNRNo varchar(20),DOJ date,NoofSeates integer,

Address varchar(20),ContactNo varchar(20),BusNo varchar(20),SeatNo integer, primary

key(PNRNo,BusNo),foreign key(BusNo) references Bus(BusNo));

Mysql> desc reservation;

28

Cancellation:

Cancellation(PNRNo: String,DOJ: Date, SeatNo: integer,ContactNo:

String,Status:String)

ColumnName Datatype Constraints Type of Attributes

PNRNo Varchar(10) Primary Key Single-valued

DOJ date Single-valued

SeatNo Integer Simple

ContactNo Varchar(15) Multi-valued

Status Varchar(10) Simple

Mysql> create table cancellation(PNRNo varchar(10),DOJ date,SeatNo integer,

ContactNo varchar(15),Status varchar(10), primary key(PNRNo),

foreign key(PNRNo) references reservation(PNRNo));

Mysql> desc cancellation;

Conclusion: The Student is able draw the tabular representation of
the relations of Roadway travels.

29

Viva Questions:

1. How is a strong entity set from an ER Diagram mapped to a relational table? What becomes its

primary key?

2. What is "cardinality" in a relationship? What are the different types of cardinality?

3. What is Schema?

4. How do you convert a weak entity set to a relational schema?

5. How do you handle multi-valued attributes when converting to a relational schema?

30

SAMPLE DATA IN TABLES:

1. Bus

2. Reservation:

Pnrno Jour_date Noofseats Address Contactno Status

1001 20-07-10 4 Hyd 9492500000 Yes

1002 21-07-10 5 Sec 9492511111 Yes

1003 05-08-10 10 hyd 9949022222 No

3. Ticket:

Tktno Jour_date Src Dest amt busno Dept_time Reach_time

10001 20-07-10 Hyd Delhi 800 100 06:00 22:00

10002 21-07-10 Hyd Chennai 700 101 08:00 23:00

10003 05-08-10 Delhi Hyd 800 102 06:00 22:00

4. Passenger:

Pnrno name tktno age Gender ppno

1001 Alekhya 10001 25 F ff11112

1002 Krupani 10002 27 F ff22332

1003 Prathima 10003 28 F F234444

1004 Prem 10004 30 M Ff202020

5. Cancellation:

Pnrno Joudate Noofseats Address Contact_no Status

1001 20-07-10 4 Hyd 9492500000 Yes

1002 21-07-10 5 Sec 9492511111 Yes

Busno name type

100 Xyz a/c

101 Pop Non a/c

102 Xxx a/c

31

WEEK: 3

Normalization

Database normalization is a technique for designing relational database tables to minimize

duplication of information and, in so doing, to safeguard the database against certain types of

logicalor structural problems, namely data anomalies.

For example, when multiple instances of a given piece of information occur in a table, the

possibility exists that these instances will not be kept consistent when the data within the table is

updated, leading to a loss of data integrity.

A table that is sufficiently normalized is less vulnerable to problems of this kind, because its

structure reflects the basic assumptions for when multiple instances of the same information should

be Normalization is a process of converting a relation to be standard form by decomposition a larger

relation into smaller efficient relation that depicts a good database design.

i.1NF: A Relation scheme is said to be in 1NF if the attribute values in the relation

are atomic.i.e., Mutli –valued attributes are not permitted.

ii.2NF: A Relation scheme is said to be in 2NF,iff and every Non-key attribute is fully

functionally dependent on

primary Key.

iii.3NF: A Relation scheme is said to be in 3NF, if and does not have transitivity

dependencies. A Relation is said to be 3NF if every determinant is a key for each &

every functional dependency.

iv.BCNF: A Relation scheme is said to be BCNF if the following statements are true

for eg FD P->Q in set F of FDs that holds for each FD. P->Q in set F of FD’s that

holds over R. Here P is the subset of attributes of R & Q is a single attribute of R

represented by a single instance only.

Normalized tables are:-

mysql> create table Bus(BusNo varchar(20) primary key,Source varchar(20),Destination

varchar(20));

mysql>Create table passenger(PPN varchar(15) Primary key,Name varchar(20),Age integer,Sex

char,Address varchar(20));

32

mysql> Create table PassengerTicket(PPN varchar(15) Primary key,TicketNo integer);

mysql> Create table Reservation(PNRNO integer Primary key, JourneyDate

DateTime, NoofSeats int, Address varchar(20),Contact No Integer);

mysql> create table Cancellation(PNRNO Integer primary key,JourneyDate DateTime,NoofSeats

Integer,Address varchar(20),ContactNo Integer, foreignkey(PNRNO) references

Reservation(PNRNO));

mysql> Create table Ticket(TicketNo Integer Primary key,JourneyDate DateTime, Age

Int(4),Sexchar(2),Source varchar(20),Destination varchar(20),DeptTime varchar(2));

The normalization forms are:

1. First Normal Form: 1NF requires that the values in each column of a table are atomic. By atomic

we mean that there are no sets of values within a column.

2. Second Normal Form: where the 1NF deals with atomicity of data, the 2NF deals with

relationships between composite key columns and non-key columns. To achieve 2NF the tables

should be in 1NF. The 2NF any non-key columns must depend on the entire primary key. In case of

a composite primary key, this means that non-key column can’t depend on only part of the

composite key.

3. Third Normal Form: Any transitive dependencies have been removed.

4. Boyce/Codd normal Form: Any remaining anomalies that result from functional dependencies

have been removed.

5. Fourth Normal Form: Any multi valued dependencies have been removed.

6. Fifth Normal Form: Any remaining anomalies have been removed.

Applying Normalization to our Entities

Consider Passenger Entity

 A Passenger may consist of two phone numbers, but atomic values should be there. so, we

normalize the relation as follows:

Passenger:

Pnrno pname age Gender ticketno address phno

2001 Alekhya 25 F 1111 H.no:101 9999900000

9999911111

33

2002 Krupani 26 F 2222 H.no:102 9999912345

2003 pratima 28 F 3333 H.no:103 9000000000

Pnrno pname age Gender ticketno address phno

2001 Alekhya 25 F 1111 H.no:101 9999900000

2001 Alekhya 25 F 1111 H.no:101 9999911111

2002 Krupani 26 F 2222 H.no:102 9999912345

2003 pratima 28 F 3333 H.no:103 9000000000

The above relation is now in 1NF and the relation is 2NF as there are no partial functional

dependencies and the relation is also in 3NF as there are no transitive dependencies.

Normalization of Bus entity:
Bus:

Busno serviceno source destination bustype Noofseats

1001 3300 Hyd Delhi A/c 20

1002 4400 Hyd Chennai A/c 28

1003 5500 Hyd Bglore Non a/c 30

In this relation the values in each column are atomic so it is already in 1NF.In

the Bus entity Busno+serviceno is the primary key.

There exists following partial dependencies.

Busno ------- > Bustype,Noofseats

Serviceno ------- >Source,Dest

So the relation will be in 2NF as follows

Busno serviceno

1001 3300

1002 4400

1003 5500

Busno bustype Noofseats

1001 A/c 20

1002 A/c 28

1003 Non a/c 30

serviceno source destination

3300 Hyd Delhi

4400 Hyd Chennai

5500 Hyd Bglore

34

The above relation is 2NF. And all columns directly depend on primary key. So there is no

transitive dependency and the relation is 3NF.

Normalization of Ticket entity:

Ticketno Joudate Source Destination Amount Catcard

1111 2010-10-08 Hyd Delhi 1200 No

2222 2010-10-08 Hyd Chennai 1000 Yes

3333 2010-08-08 Hyd Bglore 800 Yes

In this relation the values in each column are atomic so it is already in 1NF.

In the above relation there are no partial functional dependencies so the relation is in 2NF.The

ticket entity might face the following transitive dependency

Ticketno ---------------- > catcard

Catcard ------------------ >amount

So the relation is not in 3NF.

Ticketno Joudate Source Destination Catcard

1111 2010-10-08 Hyd Delhi No

2222 2010-10-08 Hyd Chennai Yes

3333 2010-08-08 Hyd Bglore Yes

Put the catcard and amount attributes in a separate table. Then the relation should be in 3NF.

Catcard Amount

No 1200

Yes 1000

Yes 800

The above relation is 3NF as we have eliminated the transitive dependencies.

The above relation is 3NF as we have eliminated the transitive dependencies.

Finally all the tables are normalized and free from data redundancy, partial functionaldependencies

and transitive dependencies.

35

VIVA QUESTIONS

1. Explain the need of normalization?

2. What is functional dependency?

3. Explain difference between third normal form and boyce codd normal form?

4. What is insertion anomaly?

5. What is transitivity dependency?

36

.

WEEK-4

Aim: Installation of MySQL and practicing DDL commands and PRACTICING DDL COMMANDS

on Road Way travels Tables.

 Installation of MySQL and practicing DDL commands.

1. Steps for installing MySQL

Step: 1 download mysql essential from the website www.mysql.com/downloads and save the

.exe file.

Steps: 2&3double click on the mysql.exe file to start installation.

Steps: 4&5

N FO R M A TE C H N O L O G Y D B M S L A B M A N U A L P a g e 1 5

http://www.mysql.com/downloads%20and%20save%20the

37

 Steps: 6&7

Steps: 8&9

38

Steps: 10&11

Step: 12&13

39

Steps: 14&15

Steps: 16&17

40

Steps: 18&19

41

Installation of MangoDB

Navigate to the download site:

Navigate to the official MongoDB website https://www.mongodb.com/

Cross-check the Specifications and Download MongoDB

Under the Software section, click on the Community server version.

At the time of writing, the latest version is 4.4.5. Ensure that the platform is Windows, and the

packageis MSI. Go ahead and click on download.

https://www.mongodb.com/
https://www.mongodb.com/

42

Mongo DB Installation:

You can find the downloaded file in the downloads directory. You can follow the stepsmentioned

there and install the software.

43

On completing the installation successfully, you will find the software package in your Cdrive.
C:\Program Files\MongoDB\Server\4.4\bin.

You can see that there are mongo and mongod executable files. The mongod file is the daemonprocess

that does the background jobs like accessing, retrieving, and updating the database.

Create an Environment Variable:

It’s best practice to create an environment variable for the executable file so that youdon’t have to

change the directory structure every time you want to execute the file.

44

Execute the Mongo App:

After creating an environment path, you can open the command prompt and justtype in mongo and

press enter.

45

The mongo server is then generated and is up and running.

Verify the Setup

To verify if it did the setup correctly, type in the command show DBS.

With that, you have successfully installed and set up MongoDB on your Windows system.

46

Data Definition Language

The data definition language is used to create an object, alter the structure of an object and also drop already

created object. The Data Definition Languages used for table definition can be classified into following:

 Create tablecommand

 Alter table command

 Truncate tablecommand

 Drop table command

 Rename Command

47

1. CREATION OF TABLES:

CREATE TABLE:

Table is a primary object of database, used to store data in form of rows and columns. It is created

using following command:

Syntax: CREATE TABLE tablename (column_name data_ type constraints, …)

CREATING TABLES:

Example:

mysql> create table Bus (Bus_No varchar(5), source varchar(20), destination varchar(20), daysperweek int);

Table Created.

Above definition will create simple table. Still there are more additional option related with create
table for the object-relation feature we will discuss it afterwards.

Desc command:

Describe command is external command of Oracle. The describe command is used to view thestructure

of table as follows.

Desc <table name>

mysql> desc Bus;

Creating Passenger table:

Mysql>create table passenger(pnrno integer,ticketno integer,name varchar(20),age int,sex char,ppno integer);

Mysql>desc passenger;

48

Reservation Table:

mysql > create table Reservation (PNR_NO integer(9), No_of_seats integer(8), Address varchar(50),

Contact_No Bigint(12), Status varchar(10));

desc Reservation;

Cancellation Table:

mysql > create table Cancellation (PNR_NO integer (9), No_of_seats integer (8), Address varchar (50),

Contact_No integer (12), Status char (3));

Table created.

SQL> desc Cancellation;

Ticket Table:

mysql >create table Ticket(Ticket_No integer(9) primary key, age int, sex char(4) Not null, source

varchar(2), destination varchar(20), dep_time varchar(4));

Table created;

mysql > desc Ticket;

49

ALTER TABLE :

To ADD a column:

SYNTAX: ALTER TABLE <TABLE NAME>ADD (<NEW COLUMN

NAME><DATA TYPE>(<SIZE>), <NEW COLUMNNAME><DATA

TYPE>(<SIZE>));

Example:

mysql > alter table Reservation add column fare integer;

mysql > desc Reservation;

To DROP a column:

SYNTAX: ALTER TABLE <TABLE NAME>DROP COLUMN <COLUMN NAME>;

Example:

mysql >alter table Reservation drop column fare ;

mysql > desc Reservation;

To MODIFY a column:

SYNTAX: ALTER TABLE <TABLE NAME>MODIFY COLUMN <COLUMN NAME>

<NEW DATATYPE>(<NEW SIZE>);

Example:

mysql >alter table Reservation modify column status varchar(10);

mysql >desc Reservation;

50

TO ADD FOREIGN KEY TO THE EXISTING TABLE

mysql > ALTER TABLE passenger ADD FOREIGN KEY (pnrno) REFERENCES Reservation (PNR_NO);
Table altered.

desc passenger;

mysql > ALTER TABLE Cancellation ADD FOREIGN KEY (PNR_NO) REFERENCES
Reservation (PNR_NO);

Table altered.

TRUNCATE TABLE:

If there is no further use of records stored in a table and the structure is required then only data can be

deleted using truncate command. Truncate command will delete all the records permanently of specified

table as follows.

Truncate table <table name>

EXAMPLE: try your own Query

RENAME A TABLE

Rename command is used to give new names for existing tables.

51

RENAME table old tablename TO new tablename;

Example:

MYSQL>RENAME table passenger TO Passenger;

VIVA QUESTIONS

1. Define data and information.

2. Define Data base management system.

3. What is SQL?

4. What is the syntax for creating a table?

5. List the components of SQL.

6. Define DDL? What are the DDL commands?

7. List out the uses of alter command.

8. What is Syntax for truncate a table?

9. What is the use drop table command?

52

WEEK- 5

AIM: Practicing DML Commands on Road Way Travels

Tables.

DML COMMANDS

1. INSERTING DATA IN TO TABLE(INSERT)

Insert command is used to insert rows into the table.

SYNTAX:

INSERT INTO table_name values (column_name1, column_name2,….column name n)

INSERTION of Data can also be done by the following Syntax:

SYNTAX

INSERT IN TO table_name (column_name1, column_name2,….column_name n)

VALUES(Value1,Value2,..Value n);

Inserting values into "Bus" table:

mysql > insert into Bus values('w1234','hyderabad', 'tirupathi',4);

mysql >insert into Bus values ('p2345','hyderabad', 'Banglore',3);

mysql >insert into Bus values ('9w01','hyderabad','Kolkata',4);

Inserting values into " RESERVATION" table:

mysql >insert into Reservation values(1,2,'masabtank',9009897812,'confirm');

mysql>insert into Reservation values(1,2,'masabtank',9009897812,'confirm');

Inserting values into “PASSENGER" table:

mysql >insert into Passenger values (1, 1,'SACHIN', 12,'m', 1234);

mysql >insert into Passenger values (2, 2,'rahul', 34,'m', 3456);

mysql >insert into Passenger values(3,3,'swetha',24,'f',8734);

mysql >insert into Passenger values(5,5,'Arun',24,'m',7387);

mysql >insert into Passenger values(6,6,'Aruna',25,'f',7389);

mysql >insert into Passenger values(4,3,'rohith',24,'m',734);

53

2. UPDATE Date Into Table(UPDATE)

This SQL command is used to modify the values in an existing table.

mysql >UPDATE tablename

SET column1= expression1, column2= expression 2,...

WHERE somecolumn=somevalue;

An expression consists of either a constant (new value), an arithmetic or string

operation or an SQL query. Note that the new value to assign to <column> mustmatching

data type.

An update statement used without a where clause results in changing respective

attributes of all tuples in the specified table.

EXAMPLE:

mysql >update Passenger set age='43' where pnrno='2';

TEST OUTPUT:

3. DELETE date from table(DELETE)

In order to delete rows from a table we use this command

mysql >DELETE FROM tablename WHERE condition;

EX: delete from Passenger where pnrno='3';

1 row deleted.

TEST OUTPUT:

SQL> select * from Passenger;

TO RETRIEVE / DISPLAY DATA FROM TABLES(SELECT)

a. Select command is used to select values or data from table

SYNTAX

SELECT * FROM TABLENAME;

Example:

SQL> select * from Passenger;

54

TESTOUTPUT:

b. Elimination of duplicates from the select statement

MySQL> SELECT DISTINCT columnname 1, columnname 2,…. columnname n FROM tablename;

EXAMPLE QUERY:

MySQL>select distinct age from Passenger;

TEST OUTPUT:

c. The retrieving of specific columns from a table

Mysql > SELECT columnname 1, columnname 2,…. columnname n FROM tablename;

Mysql>select name,age,sex from Passenger;

TEST OUTPUT:

Example1:

Display Data From BUS Table

Example2: Display Data From Reservation Table

55

VIVA QUESTIONS

1. What are the DML commands?

2. How the data or values to be entered into a table?

3. What is the use of DELETE command?

4. How the data or values to be updated on a table?

5. Differentiate delete and truncate

56

WEEK -6

AIM : A)QUERYING USING ANY, ALL, IN, UNION,INTERSECT, JOIN,CONSTRAINTS etc.)

UNION

Union is used to combine the results of two queries into a single result set of all matching rows. Both the

queries must result in the same number of columns and compatible data types in order to unite. All

duplicate records are removed automatically unless UNION ALL is used.

INTERSECT

It is used to take the result of two queries and returns the only those rows which are common in both

result sets. It removes duplicate records from the final result set.

EXAMPLES:

Let us create tables for sailors, Reserves and Boats

CREATE TABLE sailors (sid integer, sname varchar(20),rating integer,age integer);

insert into sailors values(22,'dustin',7,45);

insert into sailors values(29,'brutus',1,33);

insert into sailors values(31,'lubber',79,55);

insert into sailors values(32,'andy',8,25);

insert into sailors values(58,'rusty',10,35);

insert into sailors values(58,'buplb',10,35);

insert into sailors values(58,'buplerb',10,35);

CREATE TABLE boats(bid integer, bname varchar(20),color varchar(20));
insert into boats values(101,'interlake','blue');

insert into boats values(102,'interlake','red');

insert into boats values(103,'clipper','green');

insert into boats values(104,'marine','red');

CREATE TABLE reserves(sid integer, bid integer, day date);
insert into reserves values(22,101,'2004-01-01');

insert into reserves values(22,102,'2004-01-01');

insert into reserves values(22,103,'2004-02-01');

insert into reserves values(22,105,'2004-02-01');

insert into reserves values(31,103,'2005-05-05');

insert into reserves values(32,104,'2005-04-07');

57

QUERIES:

1. Find all sailor id’s of sailors who have a rating of at least 8 or reserved boat 103.

mysql >(SELECT sid FROM sailors WHERE rating>=8)

UNION

(SELECT sid FROM reserves WHERE bid=103);

TEST OUTPUT:

2. Find all sailor id’s of sailors who have a rating of at least 8 and reserved boat 103.

mysql >((SELECT sid FROM sailors WHERE rating>=8)

INTERSECT

(SELECT sid FROM reserves WHERE bid=103);

TEST OUTPUT:

3. Find the names of sailors who have reserved boat number 103.

mysql >(select s.sname from sailors s where s.sid in (select r.sid from reserves r where r.bid=103);

TEST OUTPUT:

4. Find the names of sailors who have never reserved boat number 103.

mysql >(select s.sname from sailors s where s.sid not in (select r.sid from reserves r where r.bid=103);

TEST OUTPUT:

5. Find sailors whose rating is better than some sailor called Horatio

mysql >(select s.sid from sailors s where s.rating > any(select s2.rating from sailors s2 where

s2.sname='Horatio');

58

TEST OUTPUT:

6. Find the sailors with the highest rating

mysql >(select s.sid from sailors s where s.rating >= all (select s2.rating from sailors s2);

TEST OUTPUT:

QUERIES ON ROADWAY TRAVELS DATABASE

1. Display unique PNR_no of all Passengers.. .

Mysql>select distinct(pnrno) from Passenger;

TEST OUTPUT:

2. Display all the names of male passengers

Mysql >select Name from Passenger where Sex='m';

TEST OUTPUT:

3. Display Ticket numbers and names of all Passengers.

Mysql>select ticketno,Name from Passenger;

59

TEST OUTPUT:

4. Find the ticket numbers of the passengers whose name start with 'r'

and ends with 'h'.Mysql>select ticketno from Passenger where Name

like'r%h';

TEST OUTPUT:

5. Find the names of passengers whose age is

between 30 and 45. Mysql>select Name from

Passenger where age between 30 and 45;

TEST OUTPUT:

6. Display all the passengers names

beginning with 'A'. Mysql>select Name

from Passenger where Name like 'A%';

TEST OUTPUT:

7. Display the sorted list of passengers names

Mysql>select name from Passenger order by Name;

TEST OUTPUT:

AIM: B) Nested, Correlated Subqueries

MySQL> select * from reserves;

SID BID DAY

22 101 10-OCT-98

22 102 10-OCT-98

22 103 08-OCT-98

22 104 07-OCT-98

31 102 10-NOV-98

31 103 06-NOV-98

31 104 12-NOV-98

64 101 05-SEP-98

64 102 08-SEP-98

74 103 08-SEP-98

10 rows selected.

60

MySQL> select * from sailors;

SID SNAME RATING AGE

22 Dustin 7 45

29 Brutus 1 33

31 Lubber 8 55.5

32 Andy 8 25.5

58 Rusty 10 35

64 Horataio 7 35

71 Zorba 10 16

74 Horataio 9 35

85 Art 3 25.5

95 Bob 3 63.5

10 rows selected.

MySQL> select * from boats;

BID BNAME COLOR

101 Interlake blue

102 Interlake red

103 Clipper green

104 Marine red

1. If boat Number is 103.Then find the name of sailors?(Using Joins)

2. Find the names of sailors who have never reserved boat number 103.(using Joins)

The SQL IN condition (sometimes called the IN operator) allows you to easily check whether any

value in a value list Matches an expression. It is used in a SELECT, INSERT, UPDATE, or

DELETE statement to help reduce the need for multiple OR conditions.

The SQL NOT IN condition (sometimes called the IN operator) allows you to easily check whether

any value in a value list NOT Matches an expression. It is used in a SELECT, INSERT, UPDATE or

DELETE statement to help reduce the need for multiple OR conditions.

select s.sname

from sailors s,reserves r

where s.sid=r.sid and r.bid=103;

Output:

SNAME

Dustin

Lubber

Horataio

61

select s.sname

from sailors s

where s.sid not in (select r.sid

from reserves r

where r.bid=103);

Output:

SNAME

Zorba

Art

Horataio

Rusty

3. Find the name of Sailors who Reserved Red boats?(Using Joins)

select sname

from sailors s,boats b,reserves r

where s.sid=r.sid and b.bid=r.bid and b.color='red';

Output:

SNAME

Dustin

Dustin

Lubber

Lubber

Horataio

4. What is the color of boat reverse by Lubber?(Using Joins)

select b.color

from boats b,sailors s,reserves r

where s.sid=r.sid and b.bid=r.bid and s.sname='Lubber';

COLOR

red

green

red

5. Find the sids of sailors with age over 20 who have not reserved a red boat.(Using Joins)

 select s.sid,s.sname

from sailors s,boats b,reserves r

where s.sid=r.sid and b.bid=r.bid and s.age>20 and b.color!='red';

SID SNAME

22 Dustin

22 Dustin
31 Lubber

62

Nested Queries

Sailors(sid, sname, rating, age)

Reserve(sid, bid, day)

Boats(bid, bname, color)

 Find the names of sailors that reserved boat 103

SELECT S.sname FROM Sailors S WHERE S.sid IN (SELECT R.sid FROM Reserve R

WHERE R.bid = 103);

Correlated Subqueries

The name of correlated subqueries means that a subquery is correlated with the outer query. The

correlation comes from the fact that the subquery uses information from the outer query and the

subquery executes once for every row in the outer query.

SELECT S.sname FROM Sailors S WHERE EXISTS (SELECT * FROM Reserve R WHERE

R.bid = 103);

**The nested query in this query is a correlated subquery.

Test that a relation satisfies some condition

… WHERE EXISTS (SELECT …) -TRUE if subquery result is not empty

SELECT S.sname

WHERE EXISTS (SELECT *

FROM Sailors S

FROM Reserves R

WHERE R.bid=103 AND S.sid=R.sid)

*Subquery is CORRELATED with parent query

64 Horataio
74 orataio

63

Constraints:

CREATE TABLE Sailors (sid int,

sname varchar(32),

rating int,

age double,

CONSTRAINT PK_Sailors PRIMARY KEY (sid));

insert into Sailors (sid,sname,rating,age) values(22,'Dustin',7,45);

insert into Sailors (sid,sname,rating,age) values(29,'Brutus',1,33);

insert into Sailors (sid,sname,rating,age) values(31,'Lubber',8,55.5);

insert into Sailors (sid,sname,rating,age) values(32,'Andy',8,25.5);

insert into Sailors (sid,sname,rating,age) values(58,'Rusty',10,35);

insert into Sailors (sid,sname,rating,age) values(64,'Horatio',7,35);

insert into Sailors (sid,sname,rating,age) values(71,'Zorba',10,16);

insert into Sailors (sid,sname,rating,age) values(74,'Horatio',9,40);

insert into Sailors (sid,sname,rating,age) values(85,'Art',3,25.5);

insert into Sailors (sid,sname,rating,age) values(95,'Bob',3,63.5);

select * from Sailors;

CREATE TABLE Boats (bid int,

bname varchar(32),

color varchar(32),

CONSTRAINT PK_Boats PRIMARY KEY (bid));

insert into Boats (bid,bname,color) values (101,'Interlake','blue');

insert into Boats (bid,bname,color) values (102,'Interlake','red');

insert into Boats (bid,bname,color) values (103,'Clipper','green');

insert into Boats (bid,bname,color) values (104,'Marine','red');

select * from Boats;

64

CREATE TABLE Reserves (sid int,

bid int,

day date,

CONSTRAINT PK_Reserves PRIMARY KEY (sid, bid, day),

FOREIGN KEY (sid) REFERENCES Sailors(sid),

FOREIGN KEY (bid) REFERENCES Boats(bid));

insert into Reserves (sid,bid,day) values (22,101,'1998-10-10');

insert into Reserves (sid,bid,day) values (22,102,'1998-10-10');

insert into Reserves (sid,bid,day) values (22,103,'1998-10-8');

insert into Reserves (sid,bid,day) values (22,104,'1998-10-7');

insert into Reserves (sid,bid,day) values (31,102,'1998-11-10');

insert into Reserves (sid,bid,day) values (31,103,'1998-11-6');

insert into Reserves (sid,bid,day) values (31,104,'1998-11-12');

insert into Reserves (sid,bid,day) values (64,101,'1998-9-5');

insert into Reserves (sid,bid,day) values (64,102,'1998-9-8');

insert into Reserves (sid,bid,day) values (74,103,'1998-9-8');

select * from Reserves;

Ex:1

Find the name and age of the oldest sailor.

SELECT S.sname,S.age

FROM Sailors S

WHERE S.age >= ALL (SELECT age

FROM Sailors);

Ex:2

For each rating, find the average age of sailors at that level of rating

SELECT S.rating, AVG(S.age) AS average FROM Sailors S

GROUP BY S.rating;

65

VIVA QUESTIONS

1) Explain the flow of execution for a Nested query

2) Differentiate between flow of execution in Nested Query and Correlated Query?

3) How is UNION ALL different from UNION?

4) Does INTERSECT include duplicate rows?

5) What happens if one of the queries in an INTERSECT operation returns no rows?

66

WEEK 7

Aim: Queries Using Aggregate Functions (Sum, Avg, Max, Min and Count) ,Group By and Having

Clause, Creation and Dropping of Views

There are various aggregate functions available in MySQL. Some of the most commonly used aggregate

functions are summarised in the below table:

Aggregate

Function

Descriptions

count() It returns the number of rows in a set, including rows with

NULL values in a group.

sum() It returns the total summed values (Non-NULL) in a set.

avg() It returns the average value of an expression.

min() It returns the minimum (lowest) value in a set.

max() It returns the maximum (highest) value in a set.

1. COUNT:

SYNTAX:

Select count ([<distinct>/<ALL]<expr>)

2. SUM:

SYNTAX:

Select SUM ([<distinct>/<ALL]<column name>)

3. AVG:

SYNTAX:

Select AVG ([<distinct>/<ALL]<column name>)

4. MINIMUM(MIN):

SYNTAX:

Select MIN ([<distinct>/<ALL]<expr>)

67

5. MAXIMUM(MAX):

SYNTAX:

Select MAX ([<distinct>/<ALL]<expr>)

GROUP BY and HAVING Clause

SYNTAX

Select [DISTINCT] select list FROM from list WHERE qualification

Group by Groupinglist having group-qualification

1. Write a Query to display the Information present in the Reservation and cancellation tables.

mysql>select * from Reservation

union

select * from Cancellation;

TEST OUTPUT:

2. Display the number of days in a week on which the 9W01 bus is available.

mysql> select daysperweek from Bus where Bus_No='9w01';

TEST OUTPUT:

3. Find number of tickets booked for each PNR_no using GROUP BY CLAUSE

mysql>select count(No_of_seats),PNR_NO from Reservation group by PNR_NO;

TEST OUTPUT:

4. Find the PNR_NO, total Number of tickets booked by a passenger where the number of seats

is greater than 1

mysql> select PNR_NO,sum(No_of_seats) from Reservation group by PNR_NO having

sum(No_of_seats) > 1.

TEST OUTPUT:

68

5. Find the distinct PNR numbers that are present.

mysql>select distinct(PNR_NO) from Reservation;

TEST OUTPUT:

6. Find the total number of cancelled seats.

mysql > select sum(No_of_seats) AS Cancelled_seats from Cancellation;

TEST OUTPUT:

7. Find out maximum age of a Passenger?

Mysql> select max(age) from passenger;

(or)

Mysql> select max(age) as max_age from passenger;

8. Find out minimum age of a Passenger?

Mysql> select min(age) from passenger;

(or)

Mysql> select min(age) as min_age from passenger;

TEST OUTPUT:

69

VIEWS

After a table is created and populated with data, it may become necessary to prevent all users from

accessing all columns of a table, for data security reasons. This would mean creating several tables

having the appropriate number of columns and assigning specific users to each table as required. This

will achieve the security requirements but will rise to a great deal of redundant data being resident in

tables, in the database. To reduce redundant data to the minimum possible, oracle allows the creation ofan

object called a view.

A view is a virtual table or logical representation of another table or combination of tables. A view

consists of rows and columns just like a table. The difference between a view and a table is that

views are definitions built on top of other tables (or views), and do not hold data themselves. If data

is changing in the underlying table, the same change is reflected in the view. A view can be built on

top of a single table or multiple tables. It can also be built on top of another view. A view derives its

data from the tables on which it is based. These tables are called base tables. Base tables might in

turn be actual tables or might be views themselves. All operations performed on a view actually

affect the base table of the view. We can use views in almost the same way as tables. Also can

query, update, insert into and delete from views, just as in standard tables.

AIM : Implement Views:

Syntax: Create View <View_Name> As Select statement;

Example:

SQL>Create View Emp_View As Select * from Emp_master where job=’clerk’;

View created.

Syntax: Select column_name,column_name from <View_Name>;

Example:

SQL>Select Empno,Ename,Salary from EmpView where salary in (10000,20000);

TEST OUTPUT:

70

UPDATABLE VIEWS:

Syntax for creating an Updatable View:

Create View Emp_vw As

Select Empno, Ename, Deptno from Employee;

View created.

SQL>Insert into Emp_vw values(1126,’Brijesh’,20);

SQL>Update Emp_vw set Deptno=30 where

Empno=1125;

1 row updated.

SQL>Delete from Emp_vw where

Empno=1122;

TEST OUTPUT:

mysql >Update EmpDept_Vw set salary=4300 where Empno=1125;

TEST OUTPUT:

mysql >Delete From EmpDept_Vw where Empno=1123;

TEST OUTPUT

DESTROYING A VIEW:

Syntax: Drop View <View_Name>;

Example:

mysql >Drop View Emp_Vw;

TEST OUTPUT:

71

VIVA QUESTIONS:

1. Define view.

2. What is the need of a view?

3. List out the advantages of views.

4. What is the syntax for creating a view?

5. How can you insert data into a view?

6. How can you update data into from a view?

7. What is the syntax for deleting a view?

8. List out the criteria for updatable views.

9. What is the syntax for renaming the columns of a view

72

WEEK 8

AIM: Triggers(Creation of Insert Trigger, Delete Trigger and Update

Trigger)

In MySQL, a trigger is a set of SQL statements that is invoked automatically when a change is made

tothe data on the associated table. A trigger can be defined to be invoked either before or after the data

ischanged by INSERT, UPDATE or DELETE statement.

A database trigger is procedural code that is automatically executed in response to certain events on a

particular table or view in a database. The trigger is mostly used for maintaining the integrity of the

information on the database.

Row-Level Trigger: It is a trigger, which is activated for each row by a triggering statement such as

insert, update, or delete. For example, if a table has inserted, updated, or deleted multiple rows, the

row trigger is fired automatically for each row affected by the insert, update, or delete statement.

Statement-Level Trigger: It is a trigger, which is fired once for each event that occurs on a table

regardless of how many rows are inserted, updated, or deleted.

Types of Triggers in MySQL?

We can define the maximum six types of actions or events in the form of triggers:

1. Before Insert: It is activated before the insertion of data into the table.

2. After Insert: It is activated after the insertion of data into the table.

3. Before Update: It is activated before the update of data in the table.

4. After Update: It is activated after the update of the data in the table.

5. Before Delete: It is activated before the data is removed from the table.

6. After Delete: It is activated after the deletion of data from the table.

https://www.javatpoint.com/mysql-insert
https://www.javatpoint.com/mysql-update
https://www.javatpoint.com/mysql-delete

73

The events that fire a trigger include the following:

1)DML statements that modify data in a table (INSERT , UPDATE , or DELETE

2)DDL statements.

3) System events such as startup, shutdown, and error messages.

4) User events such as logon and logoff. Note: Oracle Forms can define, store, and run

triggersofadifferent sort.

To View list of triggers;

Show triggers;

To remove a trigger for Database

drop trigger trigger_name;

ex: drop trigger

ins_sal;

When defining a trigger, specify the trigger timing. That is, specify whether the trigger

action is to be executed before or after the triggering statement. BEFORE and AFTER apply to

both statement and row triggers.

Example:

CREATE TRIGGER trigger_name trigger_time

trigger_eventON table_name

FOR EACH

ROW

BEGIN

Executable

Statements;

END;

 Table_name is the name of the table. Actually, a trigger is always associated with a specific

table. Without a table, a trigger would not exist hence we have to specify the table name after

the ‘ON’ keyword.

74

 Trigger_time is the time of trigger activation and it can be BEFORE or AFTER. We must

have to specify the activation time while defining a trigger. We must use BEFORE if we want

to process action prior to the change made on the table and AFTER if we want to process

action post to the change made on the table.

 Trigger_event can be INSERT, UPDATE, or DELETE. This event causes the trigger to be

invoked. A trigger only can be invoked by one event. To define a trigger that is invoked by

multiple events, we have to define multiple triggers, one for each event.

 BEGIN…END is the block in which we will define the logic for the trigger.

 Trigger Syntax and Examples

Here is a simple example that associates a trigger with a table, to activate

for INSERT operations. The trigger acts as an accumulator, summing the values inserted into

one of the columns of the table.

mysql> CREATE TABLE account (acct_num INT, amount DECIMAL(10,2));

Query OK, 0 rows affected (0.03 sec)

mysql> CREATE TRIGGER ins_sum BEFORE INSERT ON account

FOR EACH ROW SET @sum = @sum + NEW.amount;

 Query OK, 0 rows affected (0.01 sec)

The CREATE TRIGGER statement creates a trigger named ins_sum that is associated with

the account table. It also includes clauses that specify the trigger action time, the triggering event,

and what to do when the trigger activates:

 The keyword BEFORE indicates the trigger action time. In this case, the trigger activates before each

row inserted into the table. The other permitted keyword here is AFTER.

 The keyword INSERT indicates the trigger event; that is, the type of operation that activates the

trigger. In the example, INSERT operations cause trigger activation. You can also create triggers

for DELETE and UPDATE operations.

75

 The statement following FOR EACH ROW defines the trigger body; that is, the statement to execute

each time the trigger activates, which occurs once for each row affected by the triggering event. In

the example, the trigger body is a simple SET that accumulates into a user variable the values

inserted into the amount column. The statement refers to the column as NEW.amount which

means “the value of the amount column to be inserted into the new row.”

To use the trigger, set the accumulator variable to zero, execute an INSERT statement, and then see

what value the variable has afterward:

mysql> SET @sum = 0;

mysql> INSERT INTO account VALUES(1,14.98),(2,1937.50),(3,-100.00);

// cause trigger activation

mysql> SELECT @sum AS 'Total amount inserted';

+ +

| Total amount inserted |

+ +

| 1852.48 |

+ +

In this case, the value of @sum after the INSERT statement has executed is 14.98 + 1937.50 - 100,

or 1852.48.

To destroy the trigger, use a DROP TRIGGER statement. You must specify the schema name if the

trigger is not in the default schema:

Update Trigger:

UPDATE trigger that checks the new value to be used for updating each row, and modifies the

value to be within the range from 0 to 100. This must be a BEFORE trigger because the value must

be checked before it is used to update the row:

mysql> DROP TRIGGER ins_sum;

https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/drop-trigger.html

76

// for trigger activation or firing a trigger update the table as below.

Mysql>update account set amount =500 where acct_num=2; (Here amount is greater than 100)

Output:

Acct_num amount

2 0

Note: As per the code written inside the update trigger,when the amount exceeds more than 500,

the corresponding amount becomes zero.

Triggers On Multiple Tables :

 EX-1 :

mysql>create table employees(empid int primary key,

first_name varchar(30),

last_name varchar(30),

hire_date date);

mysql> delimiter //

mysql> CREATE TRIGGER upd_check BEFORE UPDATE ON account

FOR EACH ROW

BEGIN

IF NEW.amount < 0 THEN

SET NEW.amount = 0;

ELSEIF NEW.amount > 100 THEN

SET NEW.amount = 100;

END IF;

END;//

mysql> delimiter ;

77

mysql>create table employees_audit(id int auto_increment primary key,

empno int,

lastname varchar(30),

updated_name varchar(30),

changedate datetime,

action varchar(30));

mysql> insert into employees values(1,’Ajay’,’Varma’,’2000-6-15’);

mysql> insert into employees values(2,’Praveen’,’Kumar’,’2000-7-10’);

mysql> select * from employees;

mysql>create trigger be_up before update on employees for each row

insert into employees_audit

set action=’Update’,

empno=old.empid,

lastname=old.last_name,

updated_name=new.last_name,

changedate=now();

Testing the above trigger be_up : (Firing a Trigger)

mysql> update employees set last_name=’Sharma’ where empid=2;

mysql> select * from employees;

mysql> select * from employees_audit;

id empno lastname updated_name changedate action

1 2 Kumar Sharma current date&time Update

78

EX-2 :

mysql> create table members(id int,

name varchar(40),

email varchar(40),

birthdate date);

mysql> create table reminders(id int auto_increment,

memberid int,

message varchar(40),

primary key(id));

mysql> delimiter //

create trigger af_in after insert on members for each row

begin

if new.birthdate is null then

insert into reminders(memberid,message) values(new.id,concat(‘Hi ‘,new.name, ’ Pl.

Update your date of birth.‘));

end if;

end //

mysql> Query OK

mysql> delimiter ;

Testing above trigger af_in : (Firing a Trigger)

Insert into members values(1 ,’Kalyan’, ’kalyan@gmail’ ,null),

(2, ’Arjun’, ‘arjun@gmail’, ‘2000-4-15’);

mysql> Query OK

mysql>select * from members;

79

mysql>Select * from reminders;

Id memberid message

1 1 Hi Kalyan Pl. Update your date of birth.

VIVA QUESTIONS:

2. Define database triggers.

3. List out the uses of database triggers.

4. What are the pars of triggers and it uses?

5. List out the types of trigger.

6. What is the use of row trigger?

7. What is the use of statement trigger?

8. What do you meant by trigger time?

9. Compare before trigger and after trigger.

10. What is the syntax for DROP a trigger?

11. List out the some situations to apply before and after triggers.

80

WEEK 9

Aim: Procedures(Using IN, OUT and INOUT Parameters)

PROCEDURES

Procedure (often called a stored procedure) is a collection of pre-compiled SQL statements stored inside

the database. It is a subroutine or a subprogram in the regular computing language. A procedure always

contains a name, parameter lists, and MySQL statements.

It was first introduced in MySQL version 5. Presently, it can be supported by almost all relational

database systems.

Creating a procedure:

The following syntax is used for creating a stored procedure in MySQL. It can return one or more value

through parameters or sometimes may not return at all. By default, a procedure is associated with our

current database.

Syntax:

DELIMITER &&

CREATE PROCEDURE procedure_name [[IN | OUT | INOUT] parameter_name datatype [, parameter

datatype])]

BEGIN

Declaration_section

Executable_section

END &&

DELIMITER ;

Parameter Explanations

The procedure syntax has the following parameters:

Parameter Name Descriptions

procedure_name It represents the name of the stored procedure.

parameter It represents the number of parameters. It can be one or more than one.

Declaration_section It represents the declarations of all variables.

81

Executable_section It represents the code for the function execution.

MySQL procedure parameter has one of three modes:

IN parameter

It is the default mode. It takes a parameter as input, such as an attribute. When we define it, the calling

program has to pass an argument to the stored procedure. This parameter's value is always protected.

OUT parameters

It is used to pass a parameter as output. Its value can be changed inside the stored procedure, and the

changed (new) value is passed back to the calling program. It is noted that a procedure cannot access the

OUT parameter's initial value when it starts.

INOUT parameters

It is a combination of IN and OUT parameters. It means the calling program can pass the argument, and

the procedure can modify the INOUT parameter, and then passes the new value back to the calling

program.

How to call a stored procedure?

CALL procedure_name (parameter(s))

Suppose this database has a table named student_info that contains the following data:

82

Procedure without Parameter

Suppose we want to display all records of this table whose marks are greater than 70 and count all the

table rows. The following code creates a procedure named get_merit_students

DELIMITER &&

CREATE PROCEDURE get_merit_student ()

BEGIN

SELECT * FROM student_info WHERE marks > 70;

SELECT COUNT(stud_code) AS Total_Student FROM student_info;

END &&

DELIMITER ;

If this code executed successfully, we would get the below output:

mysql> CALL get_merit_student();

Procedures with IN Parameter

In this procedure, we have used the IN parameter as 'var1' of integer type to accept a number from users.

Its body part fetches the records from the table using a SELECT statement

and returns only those rows that will be supplied by the user. It also returns the total number of rows of

the specified table. See the procedure code:

83

DELIMITER &&

CREATE PROCEDURE get_student (IN var1 INT)

BEGIN

SELECT * FROM student_info LIMIT var1;

SELECT COUNT(stud_code) AS Total_Student FROM student_info;

END &&

DELIMITER ;

mysql> CALL get_student(4);

Procedures with OUT Parameter

In this procedure, we have used the OUT parameter as the 'highestmark' of integer type. Its body part

fetches the maximum marks from the table using a MAX() function. See the procedure code

DELIMITER &&

CREATE PROCEDURE display_max_mark (OUT highestmark INT)

BEGIN

SELECT MAX(marks) INTO highestmark FROM student_info;

END &&

DELIMITER ;

84

mysql> CALL display_max_mark(@M);

mysql> SELECT @M;

Procedures with INOUT Parameter:

In this procedure, we have used the INOUT parameter as 'var1' of integer type. Its body part first fetches

the marks from the table with the specified id and then stores it into the same variable var1. The var1

first acts as the IN parameter and then OUT parameter. Therefore, we can call it the INOUT parameter

mode. See the procedure code:

DELIMITER &&

CREATE PROCEDURE display_marks (INOUT var1 INT)

BEGIN

SELECT marks INTO var1 FROM student_info WHERE stud_id = var1;

END &&

DELIMITER ;

mysql> SET @M = '3';

mysql> CALL display_marks(@M);

mysql> SELECT @M;

85

Difference between Triggers and Procedures:

BASIS FOR

COMPARISON
TRIGGERS PROCEDURES

Running It can execute automatically

based on the events.

It can be invoked explicitly by

the user.

Parameter We can not pass parameters to

triggers.

We can pass parameters to

procedures.

Return Trigger never return value on

execution.

Procedure may return value/s

on execution.

VIVA QUESTIONS:

1. What is Stored Procedure?

2. What is difference between Function and Stored Procedure?

3. What are the various types of parameters in procedures?

86

WEEK-10

Aim: Usage of Cursors.

Introduction to MySQL cursor

To handle a result set inside a stored procedure, you use a cursor. A cursor allows you to iterate a

set of rows returned by a query and process each row individually.

Working with MySQL cursor

1. Declare Cursor

A cursor is a select statement, defined in the declaration section in MySQL.

Syntax

DECLARE cursor_name CURSOR FOR

Select statement;

2. Open Cursor

After declaring the cursor the next step is to open the cursor using open statement.

Syntax

Open cursor_name;

3. Fetch Cursor

After declaring and opening the cursor, the next step is to fetch the cursor. It is used to fetch the

row or the column.

Syntax

FETCH [NEXT [FROM]] cursor_name INTO variable_list;

4. Close Cursor

The final step is to close the cursor.

Syntax

Close cursor_name;

It is a good practice to always close a cursor when it is no longer used.

https://www.mysqltutorial.org/mysql-stored-procedure-tutorial.aspx
https://www.mysqltutorial.org/stored-procedures-loop.aspx
https://www.javatpoint.com/mysql-tutorial

87

When working with MySQL cursor, you must also declare a NOT FOUND handler to handle the

situation when the cursor could not find any row.

Because each time you call the FETCH statement, the cursor attempts to read the next row in the

result set. When the cursor reaches the end of the result set, it will not be able to get the data, and

a condition is raised. The handler is used to handle this condition.

To declare a NOT FOUND handler, you use the following syntax:

Declare continur handler for not found set finished=1;

The finished is a variable to indicate that the cursor has reached the end of the result set.

Notice that the handler declaration must appear after variable and cursor declaration inside

the stored procedures.

The following diagram illustrates how MySQL cursor works.

Example for the cursor:

Step 1: Open the database and table.

88

Step 2: Now create the cursor.

89

Step 3: Now call the cursor.

Query:

1) Implicit cursors: are automatically created when select statements are executed.

2) Explicit cursors: needs to be defined explicitly by the user by providing a name. They are

capable of fetching a single row at a time. Explicit cursors can fetch multiple rows

Viva Questions:

What is a cursor?

What are the steps involves in using cursor?

What is Read-Only cursor?

What is difference between implicit cursor and explicit curcor?

90

WEEK-11

CASE STUDY: University Database System

	MALLAREDDY COLLEGE OF ENGINEERING &TECHNOLOGY
	DEPARTMENT OF COMPUTER SCIENCE AND INFORMATION TECHNOLOGY
	VISION
	MISSION
	PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)
	PEO1 – ANALYTICAL SKILLS

	PEO2 – TECHNICAL SKILLS
	PEO3 – SOFT SKILLS
	PEO4 – PROFESSIONAL ETHICS
	PROGRAM SPECIFIC OUTCOMES (PSOs)
	PROGRAM OUTCOMES (POs)
	Engineering Graduates should possess the following:
	MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

	GENERAL LABORATORY INSTRUCTIONS
	Head of the Department Principal

	(R22A0584) DATABASE MANAGEMENT SYSTEMS LAB
	COURSE OBJECTIVES:
	List of Experiments:

	INTRODUCTION
	Hierarchical Model
	The drawbacks of this model are:
	Network Model
	Relational Model
	Features of an RDBMS
	Relational Database Management System
	Simple example of Relational model is as follows:
	1 :M
	Course Contains Students
	Many to Many Relationship: (M:M)M :M Students Appears Tests
	E. F. Codd Rules
	2. The Rule of Guaranteed Access
	3. The View Updating Rule
	4. The Insert and Update Rule
	5. The Physical Independence Rule
	6. The Logical Data Independence Rule
	7. The Integrity Independence Rule
	8. The Distribution Rule
	9. The Non-subversion Rule
	What is MYSQL
	1. Data Definition Language
	2. Data Manipulation Language
	3. Transaction Control Language
	4. Data Control Language
	Numeric Data Types
	Date and Time Types
	String Types

	ROADWAY TRAVELS
	 Reservations &Cancellation:

	Entity diagram for BUS
	Entity Relationship diagram consisting of Bus, ticket, Passenger and Branch entities:
	Viva Questions

	WEEK: 2
	Relational Model
	Ticket:
	Passenger:
	Reservation:
	Cancellation:
	Conclusion: The Student is able draw the tabular representation of the relations of Roadway travels.

	WEEK: 3
	Normalization
	Normalized tables are:-
	The normalization forms are:
	Passenger:

	Normalization of Bus entity:
	Bus:

	Normalization of Ticket entity:
	VIVA QUESTIONS

	WEEK-4
	Aim: Installation of MySQL and practicing DDL commands and PRACTICING DDL COMMANDS
	on Road Way travels Tables.
	Steps: 4&5
	Installation of MangoDB
	Mongo DB Installation:
	Create an Environment Variable:
	Verify the Setup
	Desc command:
	Creating Passenger table:
	ALTER TABLE :
	To ADD a column:
	To DROP a column:

	TO ADD FOREIGN KEY TO THE EXISTING TABLE
	Reservation (PNR_NO);

	TRUNCATE TABLE:
	RENAME A TABLE
	VIVA QUESTIONS

	WEEK- 5
	AIM: Practicing DML Commands on Road Way Travels Tables.
	1. INSERTING DATA IN TO TABLE(INSERT)
	Inserting values into "Bus" table:
	Inserting values into " RESERVATION" table:
	Inserting values into “PASSENGER" table:

	EXAMPLE:
	VIVA QUESTIONS

	WEEK -6
	AIM : A)QUERYING USING ANY, ALL, IN, UNION,INTERSECT, JOIN,CONSTRAINTS etc.)
	1. Find all sailor id’s of sailors who have a rating of at least 8 or reserved boat 103.
	TEST OUTPUT:
	2. Find all sailor id’s of sailors who have a rating of at least 8 and reserved boat 103.

	TEST OUTPUT: (1)
	TEST OUTPUT: (2)
	5. Find sailors whose rating is better than some sailor called Horatio
	6. Find the sailors with the highest rating

	QUERIES ON ROADWAY TRAVELS DATABASE
	Nested Queries
	Correlated Subqueries

	WEEK 7
	1. Write a Query to display the Information present in the Reservation and cancellation tables.
	TEST OUTPUT:
	TEST OUTPUT: (1)
	TEST OUTPUT: (2)
	TEST OUTPUT: (3)

	VIEWS
	AIM : Implement Views:
	Example:
	View created.
	Example: (1)
	UPDATABLE VIEWS:
	Syntax for creating an Updatable View:

	DESTROYING A VIEW:
	Example:

	WEEK 8
	AIM: Triggers(Creation of Insert Trigger, Delete Trigger and Update Trigger)
	Show triggers;
	drop trigger trigger_name;
	ex: drop trigger ins_sal;
	EX-2 :
	VIVA QUESTIONS:

	WEEK 9
	PROCEDURES
	Creating a procedure:
	Syntax:
	Parameter Explanations
	IN parameter
	OUT parameters
	INOUT parameters
	How to call a stored procedure?
	Procedure without Parameter
	Procedures with IN Parameter
	mysql> CALL get_student(4);
	mysql> CALL display_max_mark(@M); mysql> SELECT @M;

	Difference between Triggers and Procedures:
	VIVA QUESTIONS:

	WEEK-10
	Aim: Usage of Cursors.
	Declare continur handler for not found set finished=1;
	Viva Questions:

	WEEK-11

